Linkedin Labtau  

Thesis by CLEVE Sarah

Microstreaming induced in the vicinity of an acoustically excited, nonspherically oscillating microbubble
Defended on 4 october 2019
Microbubbles find use in several domains, one of them being medical ultrasound applications. Different characteristics of those bubbles such as their acoustic resonance or their destructive effect during inertial cavitation can be exploited. Another phenomenon induced around acoustically excited bubbles is microstreaming, that means a relatively slow mean flow with respect to the fast bubble oscillations. Microstreaming and its associated shear stresses are commonly agreed to play a role in the permeabilization of cell membranes, a detailed understanding of the induced flows is however missing. To acquire basic physical knowledge, this work focuses on the characterization of streaming induced around an air bubble in water, more precisely around a single acoustically trapped and excited, nonspherically oscillating bubble. The experimental part consists of two steps. First, the bubble dynamics, in particular the triggered shape mode and the orientation of the bubble have to be controlled. For this, the use of bubble coalescence proves to be an adequate method. In a second step, the microstreaming is recorded in parallel to bubble dynamics. This allows to correlate the obtained streaming patterns to the respective shape oscillations. The large number of obtained pattern types can be classified, in particular with respect to the mode number and bubble size. A close investigation of the bubble dynamics allows furthermore deducing the important physical mechanisms which lead to such a variety of streaming patterns. In order to confirm the experimental findings, an analytical model has been developed. It is based upon time-averaged second-order fluid mechanics equations and the experimentally obtained bubble dynamics serves as input parameters. Supplementary to the microstreaming work, this manuscript contains a short section on directed jetting of contrast agent microbubbles, which might appear at high acoustic driving. The impact of those microjets on cell membranes presents another mechanism made responsible for the permeabilization of cell membranes.


Microstreaming induit dans le voisinage d’une bulle micrométrique excitée acoustiquement en mode de surface
Soutenue le 4 October 2019
Des bulles micrométriques sont utilisées dans divers domaines, notamment dans des applications médicales basées sur les ultrasons. Il est possible d’exploiter différents effets des bulles, comme par exemple leur résonance acoustique ou leur effet destructeur en cavitation inertielle. Un autre mécanisme exploitable est la génération de micro-écoulements, appelé microstreaming, induits autour d’une bulle. Ces écoulements sont relativement lents par rapport aux oscillations rapides de la bulle. Le microstreaming et les contraintes de cisaillement associées jouent un rôle important dans la perméabilisation d’une membrane cellulaire, mais il manque encore une compréhension détaillée de l’écoulement induit. Afin d’améliorer la compréhension des phénomènes physiques, ce travail se concentre sur les écoulements induits autour d’une bulle d’air dans piégée et excitée acoustiquement dans de l’eau et oscillante en modes de surface. La partie expérimentale se décompose de deux étapes. Dans un premier temps, il est nécessaire de contrôler la dynamique de la bulle, en particulier ses modes de surface et son orientation.Ceci est réalisé par coalescence entre deux bulles. Dans un second temps, le microstreaming est généré et enregistré simultanément à la dynamique de bulle. De cette manière il est possible de corréler les motifs d’écoulement aux oscillations de la bulle. Le grand nombre de motifs obtenus peut être classé selon le mode dominant et la taille de la bulle. Une étude plus détaillée de la dynamique de bulle permet de déduire les paramètres importants qui mènent à une telle variété de motifs de microstreaming. Afin de confirmer les résultats expérimentaux, un modèle analytique a été développé. Il est basé sur les équations de la mécanique des fluides de deuxième ordre et moyennées en temps, la dynamique d’interface de la bulle obtenue expérimentalement sert de donnée d’entrée au modèle. Ce manuscrit contient en supplément une section sur la génération de microjets parl’implosion d’agents de contraste. Ces jets peuvent apparaître en cas d’excitation acoustique suffisamment élevée. L’impact de ces jets sur parois présente un autre mécanisme responsable de la perméabilisation de membranes cellulaires.